skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schwartz, Matthew_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Both the path integral measure in field theory (FT) and ensembles of neural networks (NN) describe distributions over functions. When the central limit theorem can be applied in the infinite-width (infinite-N) limit, the ensemble of networks corresponds to a free FT. Although an expansion in 1 / N corresponds to interactions in the FT, others, such as in a small breaking of the statistical independence of network parameters, can also lead to interacting theories. These other expansions can be advantageous over the 1 / N -expansion, for example by improved behavior with respect to the universal approximation theorem. Given the connected correlators of a FT, one can systematically reconstruct the action order-by-order in the expansion parameter, using a new Feynman diagram prescription whose vertices are the connected correlators. This method is motivated by the Edgeworth expansion and allows one to derive actions for NN FT. Conversely, the correspondence allows one to engineer architectures realizing a given FT by representing action deformations as deformations of NN parameter densities. As an example,φ4theory is realized as an infinite-NNN FT. 
    more » « less